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I. Introduction

The Bendix designed RL-34 high accuracy ring laser gyro is the

basis of the testing done under this gyro evaluation contract (see

Figure 1). Three of these gyros were incorporated into an Inertial

Sensor Assembly(ISA) with three Sundstrand QA 2000

accelerometers. This ISA was installed into one of our Advanced

Land Navigation Systems which was then tested for pointing

accuracy (see Figure 2). The overall system pointing results agree

very well with the measured individual gyro performance, such that

pointing accuracy of a few millidegrees is feasible.

Pointing Performance vs. Objectives

Initialization

The initialization goal was to demonstrate the angular rate

error of an individual RLG to be less than 0.0002 deg/hr, rms, in the

determination of the Earth's spin vector. This translates to an

initialization pointing error of 0.001 degrees (3.7 arc-seconds) at the

BGSD latitude of 40.86 degrees. The final initialization pointing

results were 0.00086 degrees (3.1 arc-seconds), one sigma, thus

meeting the goal. These results encompassed 9 positions in the level

plane (azimuth), spanning the entire 360 degree range.

Blind Target Acquisition

The objective for the target acquisition mode was 0.0001

degrees (0.36 arc-seconds) individual RLG pointing error, after a 20

degree rotation at 0.1 degrees per second. Final tracking results

were limited by the digital quantization of the gyro output to 0.77

arc-seconds. An existing BGSD system electronics modification will

bring this value down to 0.18 arc-seconds, as explained in the

recommendations section later.

Target Tracking

The angular position error objective for target tracking was

0.001 degrees, rms, with a zero input rate for a period of I0 hours.

The best recorded test was 0.00136 degrees (4.9 arc-seconds) rms,
for 10 hours. This was one of two tests that we believe were

representative of performance capabilities with proper calibration.

Together, they had a mean of 0.0022 degrees, rms.

The overall average tracking performance was 0.0038 degrees

(13.8 arc-seconds, all 12 tests). It should be noted that most of this

error occurs in azimuth, with average elevation error being less than

0.001 degrees. This difference is due to the strapdown system
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Figure 2 RL-34 ISA Assembly



implementation, which is further explained in the body of the report,
and in Appendix B.

Definition of System Roll, Pitch, and Heading

The standard nomenclature of a navigation system is defined in

terms of roll, pitch and heading. Figure 3 shows roll, pitch and

heading with respect to a North, East, and Up coordinate system.

Pitch is defined as the angle between the X system axis and the local

level plane. Heading is defined as the angle between North and the

projection of the X system axis onto the local level plane. Roll is the

angle of rotation around the X system axis. For the JPL/DSN

application, the two degrees of freedom for the antenna are azimuth

and elevation. They are related to the navigation system's heading

and pitch outputs, respectively. Throughout this report, heading and

azimuth will both be used, with azimuth being preferred. The same

is true for pitch and elevation, with elevation preferred. The

navigation system outputs all the angles in "mils" with 6400 mils in

360 degs. Figure 4 shows this convention applied to azimuth. North

corresponds to 0/6400 mils and East is 1600 mils. Most of the

analyzed data presented in this report has been converted to arc-sec

where 0.001 deg equal 3.6 arc-sec.
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North

0 mils

5600 mils
800 mils

West

4800 mils
East

1600 mils

4000 mils
2400 mils

South

3200 mils

The relationship between the system azimuth readout in Mils and Degrees.

Figure 4 System Readout in Mils and Degs
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II. Test Plans

According to the statement of work, the test plan was

separated into three different areas: initialization, acquisition, and

tracking. We also realized the need for a more accurate gyro bias

calibration procedure and developed one accordingly. Please note

that the pointing accuracy objectives are such that gyro biases be

known to 0.0001 deg/hr. Our existing automated production

calibration techniques were designed to calibrate to 0.001 deg/hr,

which is required for high accuracy RLG based navigators.

Calibration Tests

To fine calibrate the gyro biases, a four position gyrocompass

test was performed (North, South, East, West). Each position required

6-8 hours of testing to average the random noise errors down to the

gyro bias stability limit (see appendix A on gyro data). The new

gyro biases were then changed and stored in the system for use in

future tests.

Initialization Tests

Once calibrated, the system gyrocompassed to determine its

attitude (see appendix B for system implementation). Since the

longest gyrocompass time allowed (production software limitation)

was 15 minutes, multiple gyro compasses were performed for 4-8 hr

test times. The qualification of the gyrocompass accuracy was

accomplished by testing 8 azimuth positions at 45 deg intervals.

Acquisition Tests

Once the system was initialized, the acquisition capability was

tested by rotating the system azimuth and elevation to acquire a

target. The rate table was used to rotate at various rates. The

elevation was changed with the Ultradex. The length of each test

was limited by the 100 second data update rate for the high rotation

rate tests or by the longer time of the low rotation rate test. Each

test was performed multiple times to generate performance and test
statistics.

Tracking Tests

All the tracking tests involved a 10 hour static navigation test.

Eight were performed at 0 deg elevation and 4 were performed at 60

deg elevation.
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III, Test Facility and Metrology Descrintion

Bendix Facility

The geodetic latitude of Bendix's Teterboro complex is 40.86056

degrees. Within the facility, there are four outdoor geodetic survey

monuments to identify our geophysical location so we can cross

check each monument for accuracy. The monuments are calibrated

every 10 years by using a telescope-theodolite referring to the

"North Star" -- Polaris. The most recent calibration was done in

October, 1991. The overall accuracy to true north is within 2 arc-sec.

Using this as a primary north reference, "North" is transferred and

aligned to an indoor monument for all of our test measurements The

indoor "North" reference is located in our temperature controlled

system test area. The room temperature is controlled around 70 +/-5

deg F all year long.

For the purposes of this evaluation, two test sites were utilized.

The primary site was a Contraves rate table model 51C, with an air-

bearing table. On top of this table was mounted an Ultradex table.

Due to the time limitations of this contract, early results were

obtained on a three axis dividing head which was quickly set up

while the primary site was being prepared and calibrated. These

two sites are shown in Figure 5 and 6.

Detailed descriptions of Test Equipment

Theodolites

There are two different models (model T-1600 and model T-

2000) of theodolites used in our system alignment. Both theodolites

were manufactured by Wild Heerbrugg of Switzerland. The

resolution of these instruments are one arc-sec and one-tenth arc-sec

for models T-1600 and T-2000, respectively. The high precision

model T-2000 theodolite was used in the air-bearing table

calibration only, all the other theodolite measurements were done by

with model T-1600. A precision polished cube was mounted on the

ISA as the reference for all external reference measurements. The

cube is calibrated to one arc-sec for each polished surface.

Due to the limited amount of light reflected from the cube, a

small modification was made to improve the theodolite reading and

we believe this modification had no effect on theodolite accuracy.

We added a fiber optic light source to increase the intensity of the

light sent out from the theodolite to the cube, thus increasing the

reflected signal.

The theodolite measurement was made in both stationary and

dynamic testing of the navigation system. In the stationary mode

8
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A front view of the air-bearing table and its control console.

The table is installed on an isolation pad to isolate any
building vibrations.

tFigure 6 Air Bearing Test Site
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with the system at rest, there were sharp line images in the

theodolite in both the vertical and horizontal. In the dynamic mode

when the system was in operation, the horizontal line was foggy and

oscillated around the stationary line. The blurred line was due to
"dither" reaction motion of the ISA. The theodolite horizontal icon

corresponded to the system local level and vertical icon

corresponded to the system heading- azimuth angle.

Table alignment

The test table "North" was based on our indoor north monument

by using two theodolites to transfer north in three steps to the table.

Two T-1600 model theodolites were used to complete the transfer

alignment operation. The first theodolite was aligned to indoor north,

then transferred the alignment to the second theodolite and finally

transferred to the ISA external reference-cube in a third step by

moving the first theodolite (see Figure 7 for conceptual drawing).

This is a time consuming and difficult operation, and we eliminated

error and saved time by using a combination of the precision

Ultradex table and a porro prism to establish "North" on the test

table top ( see Figure 8 for conceptual drawing).

Three Axis Dividing Head Table

The initial system testing was conducted on a three axis dividing

head table ( see Figure 5). This setup allowed us to adjust the system

azimuth, elevation and roll. The table resolutions in azimuth and

elevation are 5 arc-seconds and adjustment in roll is limited to the

"worm" gear resolution. At each test position, the exact position was

confirmed by using theodolites in all angles. Using this technique, we

were able to complete our first system calibration run before moving

to the newly installed high precision air-bearing rate table.

Air-bearing Table

A high precision air-bearing rate table model 51C manufactured

by Contraves was installed in our laboratory for these tests (see

Figure 6). The table was designed for testing high accuracy mechani-

cal and laser inertial systems. The aerostatic table axis bearing

exhibits very low axis friction and minimizes axis wobble for effec-

tive evaluation of gyro performance. The servo driven table axis

(azimuth) provides precise control of table position which is

displayed at the control console with a resolution of .0001 deg (0.36

arc-sec). The table payload is rated at 800 Ibs in the vertical axis.

The table was installed on an isolation pad to isolate the test stand

from the rest of the building. A 12 inch Ultradex table was mounted

on top of the table for system elevation adjustment. The Ultradex

11



0
Z

>-
"I- i
F- X

.J

N > 0

0

0
°_
m

0

0
0

°

II

o 0

Z
rr
UJ

X
W

I--I
rrl

]2



Iii
0
Z
UJ
n,-
W
U_
Ill
n,-

<
Z

Ill

W
_I
nn

OC

t
7-

n-
O
Z

Ill

m

"_ 0
I"7
0
W
7"

7- l
F- X

..J
__,,,
N >
< W

.J

m

I

W
m
l ,

w I

0

0 ¢)

0

eZ

_E

°_ °_

EoE
,_

O _

E

0

0

o_

C_

r_

©

0

0

b.

13



table model R-13722-3 was manufactured by Absolute Accuracy

Gage Inc. with horizontal recommended load limit of 300 lbs. The

Ultradex table accuracy is better than 0.25 arc-sec with 0.25 degree

incremental resolution.

Table Calibration

A high precision theodolite model-T-2000 and an autocollimator

were used to calibrate the air-bearing azimuth table and Ultradex

elevation table. The spindle axis of the air-bearing azimuth table was

adjusted within 2 arc-sec for 8 different table positions(0, 45, 90,

135, 180, 225, 270, 315). These 8 positions were used for system

calibration operation. The air-bearing table azimuth resolution of

0.0001 deg (0.36 arc-sec) was confirmed by using the combination of

the high precision theodolite and the autocollimator.

The Ultradex table used for elevation movement was aligned to

the local level and the 1/4 arc-sec table resolution was confirmed by

using the high precision theodolite.

Test environment

All tests were conducted in an air-conditioned, temperature

controlled standard laboratory environment. No special attentions

were made to control room temperature better than +/- 2 deg F nor

were there any attempts to control room humidity.

14



IV. RLG Array Descriotion. and Test Configurations

Inertial Sensor Assembly Description

The Inertial Sensor Assembly(ISA) includes three RLG's and

three Sundstrand QA 2000 accelerometers (see Figure 2). For this

testing, the three gyros that were installed into the ISA were

X gyro SN: B2003

Y gyro SN: B4500

Z gyro SN: Z2002

It also includes the High Voltage Power Supply and the current

regulator assemblies needed to start and run the plasma discharges

for the three RLG's. Additional low-voltage support electronics exist

in the system cards that are interfaced to the ISA through two 50-

pin connectors. The RLG's are mounted orthogonally and the three

accelerometers are similarly mounted so their respective axes are

collinear with the gyros. The accelerometer triad is mounted close to

the center of gravity of the ISA to minimize lever-arm effects.

The ISA also has magnetic shielding(50:l) to reduce any

magnetic effects from sensor outputs to values below instrument

stability levels. Typical gyro sensitivity when mounted in the ISA is

0.0002 dph/gauss. The areas where testing is done show field

fluctuations less than 1 gauss for the tests that were conducted for

this gyro evaluation.

The ISA assembly is suspended by eight vibration isolators

that are matched in transfer characteristics to keep the center of

suspension co-incident with the center of gravity and thus minimize

dynamic motion. The isolators are arranged in a symmetric fashion

to aid in balancing the entire assembly. The eight mounting points of

the ISA are arranged such that four are through the top of the

system chassis, and four are through the bottom of the system
chassis.

Ring Laser Gyro Noise Sources

There are three basic noise sources for the RL-34 gyro in this

application: quantization noise, random walk noise and gyro bias

instability noise. Each error appears differently as a function of

testing time and system output (rate or angle). At short test times

for angle measurements the error is dominated by the gyro

quantization, while the gyro random walk error increases as a square

root function of time and the bias instability contribution grows

linearly as a function of time. The overall Noise Equivalent Angle

(NEA) and Noise Equivalent Rate (NER) equations are given as :

15



NEA = +

and

( RWC_/3600 T)
2 2

+ (BI*T)

NER = + + (BI)
2

where Q is the gyro quantization error in arc-sec, RWC is the gyro
random walk in deg/root-hr, BI is gyro in-run bias instability in
deg/hr, and T is the data sampling time in seconds.

Sigma Plot Generation

One useful method to estimate the quantization, RWC and bias

instability errors for an RLG is to plot the standard deviation of the

gyro output vs integration time. Table 1 shows the first 60 points of

data for B4500 from data file 06-30-91.g (see appendix A for details

on datafile). The first column shows run time in seconds for the 100

seconds/sample data. The second column shows the gyro pulses per

100 second sample. The scale factor (SF) for the RL-34 with X4 logic

is 0.3838 arc-sec/pulse. This SF was used to scale the gyro

pulses/100 sec to deg/hr (column 3). This data represents the gyro

output integrated for 100 seconds. At the bottom of column 3 is

shown the integration time of 100 seconds with a standard deviation

for the 60 points of .0072 deg/hr. Column 4 shows the data

integrated for 200 seconds with a standard deviation for the 30

points of 0.0042. Similarly, the data was integrated into 300 and

400 second samples. The maximum integration time was limited at

400 because longer integration times gave less than 15 samples (an

arbitrary limit for a statistically valid sample size).

A plot on a log-log scale of standard deviation vs integration

time allows graphical analysis of the various noise terms described

above. It can be seen that from the NER equation that on a log-log

plot the quantization noise has a slope of -1, the RWC noise has a

slope of -1/2, and Bias instability has a slope of 0. Figure 9 shows a

graphical estimation of the three errors by drawing the appropriate

slope lines through the data. In order to reduce time and increase

accuracy, a computer program was developed which fits the NER

equation to the data. It still plots out the data and draws the

appropriately sloped lines for visual confirmation of the fit to the

data. Figure 10 show the computer generated lines and the

16



Table I
Example of Calculations for a Sigma Plot

Data file: 06-30-91. 9 Gyro SN: B4500 Scale Factor: 0.3838 arc-sec/pulse

Run Time

(see)
Gym Omput
SN: B4500

Pulses/lO0 see)
100 2572

200 2571

30[ 2570

400 2568

500 2569

60( 2564

700 2574

800 2564

900 2569

1000 2569

1100 2568

1200 2568

1300 2569

1400 2567

1500 2571

1600 2568

1700 2568

1800 2566

1900 2569

2000 2572

2100 2567

2200 2567

2300 2568

2400 2570

2500 2569

2600 2566

2700 2570

2800 2568

2900 2568

3000 2571

3100 2569

3200 2565

3300 2569

3400 2568

3500 2570

3600 2570

3700 2568

3800 2567

3900 2569

4000 2568

4100 2570

4200 2567

4300 2567

4400 2571

4500 2568
4600 2570

4700 2569

480C 2568

490C 256_

5000 2566

5100 25711

5201 2568

5300 2570

540C 2567

55001 2567

5600 2570

5700 2568
5800 2569

5900 2567

6000 2570

Scaled to

Deg/hr

(deg/hr}
9.871;

9_8675

9.8637

9.8560

9,8598

9.8406

9.8790

9.8406

9.8598

9.8598

9.8560

9.8560

9.8598

9.8521

9.8675

9.8560

9.8560

9.8483

9.8598

9.8713

9.8521

9.8521

9.8560
9.8637

9.8598

9.8483

9.8637

9.8560

9.8560

9.8675

9.8598

9.8445

9.8598

9.8560

9.8637

9.8637

9.8560

9.8521

9.8598

9.8560
9.8637

9.8521

9.8521

9.8675

9.8560

9.8637

9.8598

9.8560

9.8598

9.8483

9.8675

9.8560

9.8637

9.8521

9.8521

9.8637

9.8560
9.8598

9.6521

9.8637

Summed 1o

200 se_sample

(deg/hr)

9.8694

9.8598

9.8502

9.8598

9.8598

9.8560

9.8560

9.8617

9.8521

9.8656

9.8521

9.8598

9.8541

9,8598

9.8617

9.8521

9.8579

9.8637

9.8541

9.8579

9.8579

9.8598

9.8598

9.8579

9.8541

9.8617

9.8579

9.8579

9.8579

9.8579

Summed to

300 sec/sample

(deg/hr }

9.8675

9.8521

9.8598

9.8573

9.8598

9.8534

9.8611

9.8573

9.8573

9.8598

9.8547

9.8611

9.8560

9.8573

9.8585

9.8598

9.8585

9.8573

9.8573

Summed to

400 sec/sample

(de(j/hr)

9.8646

9.8550

9.8579

9.8589

9.8589

9.8560

9.8569

9.8569

9.8608

9.8560

9.8589

9.8589

9.8579

9.8579

9.8585 9.8579

Number of,Samples 601 30 20 15

300

0.0032

200

0.0042

100

0.0072
Integration Time (see)

Standard Deviation (deg/hr)

400

0.0023

17
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calculated values. Notice that they agree except for the bias

instability value. The computer value is more accurate than the

graphical analysis because the test was not long enough to

graphically determine the bias instability yet the computer can still
estimate the information.

Individual Gyro Information

An RL-34 gyro is generally biased at less than 0.04 degrees per

hour. This is a fixed bias magnitude which does not imply bias

stability, one of the features of RLG technology. Typical RL-34 gyros

have bias stabilities of less than 0.0005 dph, which is more than

sufficient for the their navigational system requirements, but needs

to be better for the DSN pointing application. In-run stabilities of

RL-34 gyros at constant temperature have been as good as 0.00015

dph.

During the gyro evaluation, there was a unique opportunity for

GSD to evaluate the RL-34 gyroscope for the DSN application. We

utilized three RL-34 gyros set aside for our high-accuracy navigation

systems demonstrator. These three units are representative of GSD's

high accuracy RLG development. While all have been tested and

accepted for our navigations system requirements, GSD felt they

came close to the requirements for the DSN application.

Gyro S/N B4500 was built under last year's IR& D program and

has demonstrated 0.00046 dprh random walk, with bias

repeatability of less than 0.0004 dph, one sigma. The bias

repeatability is the residual error left after thermal modeling over

the temperature range of -55 to + 70 degrees Celsius. A significant

portion of this error resides below -10 Celsius, and as such significant

performance improvement is possible for a DSN application. Also

note that turn-on to turn-on bias repeatability at room temperature

has been shown to be within the RL-34's in-run bias stability and is

less than thermal residual bias repeatability.

S/N B4500 is part of constant improvement of RLG technology,

and it has capability for in-run bias stability of less than 0.0002 dph.

This unit is part of our newest series of RL-34 gyros designed under

IR&D funding, which have been better performers than previous RL-

34 gyros built at GSD. They have lower environmental sensitivities,

improved bias performance, and are more producible than previous

RL-34 gyros.

Gyro S/N B2003 was built in 1989, and was evaluated at the

Army MICOM laboratories, as part of our entry into RLG based land

navigation systems and north finding modules. At that time, this

unit demonstrated 0.0005 deg/hr bias repeatability over

temperature, and 0.001 deg/rt-hr random walk coefficient. At GSD

20



this unit has tested to bias repeatabilities better than 0.0007 dph,
and RWC of better than 0.00055 dprh. In addition, this unit has
shown in-run bias stability of 0.0002 dph.

Gyro S/N Z2002 was built in 1988 under our IR& D program,
and has tested at better than 0.001 dph bias repeatability over
temnperature, while having a random walk of 0.00059 dprh.

These three gyros are representative of our high accuracy RLG
program at GSD, and all are tested, proven performers which GSD
utilized during the gyro evaluation program for DSN applications.
They were installed into the ISA as listed below:

X gyro SN: B2003
Y gyro SN: B4500
Z gyro SN: Z2002

Appendix A includes plots of individual gyro data for each of
the three gyros. Each of the sigma plots has been marked graphically
to estimate the random walk coefficient and the in-run bias stability
for each gyro. This data was previously provided to JPL under
separate cover on July 10, 1991, including the actual data records on
a floppy disk.
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V. Data acquisition _lnd orocessing descrivtion

The standard input/output port of the navigation system used

for these tests is an RS-232 serial port. The data acquisition

computer used this RS-232 serial port to inte_ogate various system

variables every 100 seconds during the course of a test. These

system-variables include compensated and uncompensated gyro and

accelerometer outputs as well as attitude and navigation variables

like roll, pitch, heading, latitude and longitude. The data acquisition

computer stored all 60 system variables while providing the

capability to plot up to 6 variables real time. The stored datafile
names contain the date of the test and the number of tests started

that day. For example 092091b.dat is the second test started on
9/20/91.

All of the detailed data analysis and plots were generated on

an additional computer using a custom software package. Most of

the summary data was tabulated and analyzed using either Lotus

123 or Microsoft Excel. A detailed description of the analysis will be

included in the next section as the processed test data summaries are

presented.
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VI. Processed test data summary records

Initialization

The gyro bias requirements for the JPL application require the

gyro biases be calibrated to <0.0001 dph. This specification was

based on the need to track a target for 10 hours to within 0.001

degrees-rather than the requirement for intialization of <0.0002 dph.

The long term bias stability (months years) will maintain this

accuracy only with periodic re-calibration. A calibration procedure

was designed that will allow the gyro biases to be periodically

calibrated in a manner consistent with the DSN application. This

procedure entails mounting the system on an indexing table or

equivalent and testing at 4 different positions. From these four

positions, the gyro and accelerometer biases can be determined. To

evaluate if this procedure was plausible, we used it to calibrate the

gyro biases. It is estimated that this 24 hr calibration procedure (6

hrs at 4 positions) will have to be performed monthly to maintain

the bias requirements for the JPL application.

To calibrate the gyro biases, the table was set to 4 positions: 0,

180, 90 and 270 deg. When the rate table is set to 0 deg, the X axis

of the system is North. At position 90 deg, the X axis is East. At

each position, multiple 15 minute alignments were performed for

over 4 hrs. The heading value at the end of each alignment was

recorded. The table below summarizes the four calibration positions.

Table II

Calibration Data at Four Positions

Data File Table Table

Azimuth Azimuth

Degrees Mils

System Number

Output Standard of

Mean Deviation Aligns
Mils Mils

090691 b.dat 180 3200

09099 la.dat 360 6400

090991 b.dat 90 1600

091091a.dat 270 4800

3200.74215 0.05792 176

6398.79999 0.06929 26

1600.74174 0.14317 46

4898.81603 0.11603 18

To clarify this data, the calibration test performed at the 360

degree position will be examined in detail. This test was performed

for over 6.5 hrs with 26 fifteen minute aligns being performed. The

table below shows the heading for all 26 aligns. These aligns have a
mean of 6398.800 mils with a standard deviation of 0.0693 mils, or
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TABLE III

List of Azimuth at Completion of Alignment
Datafile 090991 a.dat

1 6398.715 14 6398.863
2 6398.838 15 6398.831
3 6398.793 16 6398.863
4 6398.876 17 6398.879
5 - 6398.729 18 6398.773
6 6398.927 19 6398.705
7 6398.855 20 6398.841
8 6398.732 21 6398.705
9 6398.843 22 6398.902

1 0 6398.775 23 6398.671
1 1 6398.790 24 6398.821
1 2 6398.723 25 6398.833
13 6398.747 26 6398.764

Standard Dev. 0.0693 mils
MEAN 6398.800 mils

0.0039 degrees. Recall that 6400 mils = 1 revolution. This datafile

(090991a.dat) will be included with the raw data records.

The old bias values for the X, Y, Z gyro were -0.00388, -

0.002112, and 0.00449 deg/hr, respectively. From these four

calibrations runs, the bias corrections for the X and Y gyros were

calculated to be +0.01075 and -0.010845, respectively. The new bias

values of +0.00687 and -0.01296 (x and y, respectively) were

entered and stored into the system to be used in all future tests. The

Z gyro bias was not adjusted for these initialization tests since Z gyro

bias errors do not affect gyro compass accuracy in these positions.

The additional advantage of this calibration procedure is its

ability to determine the boresite error. The boresite error for this

mounting configuration is -0.225 mils. This means that as the table

is set to different azimuth positions, there will be a consistent -0.225

mils difference in the system azimuth output.

With the boresite known and the gyros biased, a test was

performed to evaluate the overall gyro compass accuracy at 8

different table azimuth positions. Table IV show a summary of these

tests. The last column is the azimuth system error representing the

difference between the actual value and the expected value. The

mean and standard deviation for the 8 azimuth errors are

calculated.
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Data File

Table IV

Summary of Gyro Compass Accuracy at 8 Positions

Table Table System System No of
Azimuth Azimuth Azimuth Azimuth
(degs) (mils) Mean (mils) 1 sigma

(mils)- Aligns

091091d.dat 360
180
90

091191f.dat 270
315
135

091291c.dat 45
225

6400.0000 6399.75506
3200.0000 3199.79102
1600.0000 1599.74164
4800.0000 4799.79106
5600.0000 5599.8117
2400.0000 2399.76465

800.0000 799.75719
4000.0000 3999.83993

0.04638
0 04608
0 15098
0 15118
0 08254
0 16084
0 15622
0.11582

STD
MEAN

Azimuth
Error
(arc-
sec)*

11 4.0
1 1 -3.2
25 6.7

23 -3.3
1 7 -7.4
16 2.1
24 3.6
23 -13.1

6.7
-1.3

* Azimuth Error = (Table Azimuth - System Azimuth Mean + Boresite) *360/6400*3600

Boresite (mils) -0.22504

Some additional initialization tests were performed at other

table azimuth positions and are summarized on table V. The overall

performance was obtained by analyzing these 14 table positions and

the 8 table positions shown on table 3. These 22 table positions had
a mean of -0.82 arc-sec with a standard deviation of 6.1 arc-sec.
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Table V
Summary of Additional Gyro Compass Positions

Data File Table Table System System
Azimuth Azimuth Azimuth Azimuth
(degs) (m i l s) Mean (mils) 1 sigma

(mils_-

No of

Aligns

Azimuth
Error

(arc-sec)*

091391f.dat

092391 b.dat

360 6400.0000 6399.75715 0.04001
180 3200.0000 3199.79099 0.03832

200.0500 3556.4444 3556.23502 0.0726
200.1000 3557.3333 3557.13241 0.08962
200.1500 3558.2222 3558.02457 0.08043
200.2000 3559.1111 3558.90043 0.0772
200.2500 3560.0000 3559.82402 0.07599
200.3000 3560.8889 3560.71208 0.06746

360 6400.0000 6399.75317 0.0472
0.1308 2.3253 2.08827 0.05194
0.1336 2.3751 2.11725 0.05027
0.1364 2.4249 2.17122 0.04679
0.1392 2.4747 2.20722 0.05784
0.1420 2.5244 2.29645 0.05182

STD
MEAN

22 3.6
23 -3.2
22 -3.2
22 -4.9
22 -5.5
22 -2.9
22 -9.9
22 -9.7

8 4.4
1 1 2.4
11 6.6
11 5.8
12 8.6
12 0.6

6.0
-0.5

For All 22 table azimuth
positions

STD 6.1
MEAN -0.8

* Azimuth Error = (Table Azimuth - System Azimuth Mean + Boresite) *360/6400*3600

Boresite (mils) -0.22504
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The ability to calibrate the gyros in the system to < 0.0002 dph

bias with the above calibration procedure did not prove completely

effective the first time. The data in table IV shows the gyrocompass

accuracy at 8 positions after initially calibrating the gyro biases.

Note that the first four positions are a repeat of those used during
the calibration. If these tests were considered to be a second

calibration, the X and Y gyro biases should still be adjusted by

-0.00028 and 0.0002 dph, respectively. These small bias errors

remained due to the approximate equations used to calculate the

gyro biases from the calibration data. Because of earlier experiments

with the system software, the biases values required considerable

changes (.01 dph) after the first calibration. Once the system is

calibrated, the monthly changes will be much smaller in magnitude

and the approximate equations will be acceptable to bias the gyros to

0.0001 dph.

Due to the limited test time available on this program, the

biases were not changed and testing continued. This data was later

post processed to correct for the bias errors. Table VI shows the

azimuth error (from table IV & V), the correction based on the bias

errors, and the corrected azimuth error. This reduced the

initialization error by a factor of 2 (to 3.1 arc-sec, one sigma)

showing that the system performance slightly exceeded the expected

limit (see error analysis section).

Even though bias errors were included, they remained constant

during the initialization portion of the tests. Table VII shows a

summary of tests repeated at table position 360 and 180 degs (based

on the corrected azimuth error from table VI). At the 360 deg

position, the azimuth error had a standard deviation of 0.4 arc-sec

over a 13 day period. Even though this standard deviation is slightly

lower than expected (see error analysis section), it indicates an

extremely stable gyro bias.
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X Bias Error
Y Bias Error

Datafile

Table VI

Azimuth Error Corrected

-0.00028
0.0002

Table Azimuth

(degs)

for Bias Errors

Azimuth Error* Azimuth Corrected Azimuth
Correction

(arc-sec) for bias Error** Error***
(arc-sec) (arc-sec)

091091d.dat 360.00 4.00 3.63 0.37
180.00 -3.20 -3.63 0.43
90.00 6.70 5.08 1.62

091191f.dat 270.00 -3.30 -5.08 1.78
315.00 -7.40 -1.03 -6.37
135.00 2.10 1.03 1.07

091291c.dat 45.00 3.60 6.16 -2.56
225.00 -1 3.1 0 -6.16 -6.94

091391f.dat

092391 b.dat

360.00
180.00
200.05
200.10
200.15
200.20
200.25
200.30
360.00
0.1308
0.1336
0.1364
0.1392
0.1420

3.60
-3 20
-3 20
-4 96
-5 50
-2 90
-9 90
-9 70
4 40
2.40
6.60
5.80
8.60
0.60

3.63 -0.03
-3.63 0.43
-5.15 1.95
-5.15 0.19
-5.16 -0.34
-5.16 2.26
-5.16 -4.74
-5.17 -4.53
3.63 0.77
3.64 -1.24
3.64 2.96
3.64 2.16
3.64 4.96
3.64 -3.04

STD 6.08 3.09
MEAN -0.82 -0.40

* From table IV & V

**Azimuth Correction =Table_pos -
ATAN((11.37"S IN(Table_Pos)+ybias)/(11.37*COS(Table_Pos)+Xbias))

*** Corrected Azimuth Error = Azimuth error - Azimuth Correction
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Table VII

Summary of Repeated Alignment Tests

Datafile Corrected azimuth error *
Table Azimuth Position

(arc-sec)
360 180

091091d.dat 0.37 0.43
091391f.dat -0.03 0.43
092391 b.dat 0.77

Standard Dev. 0.40

* From table Vl

Error Analysis of Initialization tests

The initialization is a gyrocompass operation where the two

level gyros (Gyro X and Gyro Y) are used to measure the horizontal

component of Earth's rate. The Azimuth angle is equal to the

arctan(GyroY/GyroX). Depending on length of time spent gyro

compassing, the accuracy will improve and can be predicted from the

NER for each gyro. A propagation of error analysis can predict the

uncertainty in azimuth based on the NER of the X and Y Gyro. This

was done in Table VIII.

Since there was a substantial difference between the RWC of

the X and Y gyros, the uncertainty in azimuth should vary depending

on which gyro is primarily used to gyrocompass. Table VIII shows

the predicted uncertainty in azimuth as of function of azimuth.

There is fair agreement with actual system azimuth uncertainties.

Note that table azimuth positions 360 and 180 show a lower noise

than the 90 and 270 azimuth positions. This is because at the

360/180 positions, the gyrocompass is dominated by the Y gyro. At

the 90/270 positions, the gyro compass is dominated by the X gyro.

Since the Y gyro has lower noise in 15 minute samples then the X

gyro, the gyrocompass noise is lower at the 360/180 positions

compared to the 90/270 positions. Future tests were initialized near

360 table azimuth to take advantage of the reduced noise in this

orientation.
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Table VIII

Initialization Error Based on Gyro Noise Model

Gyro X
Quantization Noise (arc-sec)*** 1.2

RWC (dprh)*** 0.0008
Bias Instability (dph)*** 0.0002

Gyro Y
1.2

0.0003
0.0002

NER for 15 minute alignment time 0.001 70 0.00083

Table Azimuth
Uncertainty in Azimuth

Predicted* Actual**

(Mils) (Mils)

36O
180
90

270
315
135
45

225

Mils
0.074
0.074
0 152
0 152
0 120
0 120
0 120
0 120

0.046
0.046
0.151
0.151
0.083
0.161
0.156
0.116

Horizontal Earth's Rate (dph) at BGSD Latitude = 11.37 deg/hr
*Predicted = ((SigmaX*SIN(table))^2+(SigmaY*COS(table))^2)^0.5

*180/PI()*3600/ERH/3600/360*6400
** From Table IV
*** Based on sigma plot analysis with system in current configuration

The above analysis also predicts what the ultimate

gyrocompass accuracy will be for longer gyrocompass times. The

gyro noise for time periods longer than 4-6 hrs is dominated by the

bias stability of the gyro. If a 0.0002 dph bias stability and 0.0003

dprh RWC gyro is used to gyrocompass for 6 hrs, the expected gyro

and azimuth noise are 0.00023 dph and 4.2 arc-sec, respectively.

Taking another look at the data on table VI shows there is fair

agreement to the actual data. The "Azimuth Error" shows a 6.1 arc-

sec noise (sigma) and the "Corrected Azimuth Error" shows a 3.1 arc-

sec noise. Both of these numbers are close to the expected azimuth

noise with the "Corrected Azimuth Error" even slightly better than

expected.
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System turn on and off repeatability test

The system was locked at table position 3200 mils (south) and

tested for on-off repeatability. The system was turned off for 24 hrs

in between each turn on as required in the statement of work.

During the turn on periods, gyro compass data was recorded for 8 hrs

and the mean value calculated. The results were :

1st turn on and system heading : 3200.830 mils

system off for 24 hrs

2nd turn on and system heading : 3200.852 mils

system off for 24 hrs

3rd turn on and system heading : 3200.845 mils

This data shows that the system has excellent repeatability

with a 2.3 arc-sec 1 sigma.

Initialization Testing Conclusion

The statement of work's objective for initialization translates to

an accuracy of 3.7 arc-sec (0.0002 deg/hr bias error at BGSD

latitude). When the data is post processed to remove the remaining

small bias errors, the initialization results yield 3.1 arc-sec, 1 sigma.

This indicates that the two gyros whose input axes lie in the level

plane clearly have bias stabilities < 0.0002 deg/hr. It further

indicates the potential of the BGSD RL-34 RLG-based pointing system

to initialize to within the 0.001 degree angular objective.
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Blind Acauisition T_tin_,

The first series of acquisition tests were 20 degree azimuth

rotations at 0 degree elevation. In this test series, the experiments

were conducted by rotating the air-bearing azimuth table from

either east-to-west or west-to-east for exact 20 degree angles at

various rotation rates of 0.5 deg/sec, 0.2 deg/sec, 0.07 deg/sec, and

0.05 deg/sec rates as required by the statement of work.

The test data was recorded in the form of system heading,

pitch and roll information. The objective was to compare the system

heading raw data before and after 20 degrees air-table rotation. The

azimuth error was defined as any heading deviation from 20 degrees
rotation as shown below:

Azimuth error= Abs.Value{headingl-heading2}-20 degrees

where heading 1 is the system heading reading before the 20

degrees rotation and heading 2 is the system heading reading after

20 degrees rotation.

The system information is updated every 100 seconds with our

current data acquisition design and no attempt was made to change

the system readout software for instant update after rotation.

A summary of these test results is given in Table IX, showing

one sigma azimuth error as a function of azimuth rotation rate. The

one sigma of these measurements clearly demonstrated that the

system error is a function of rotation rate. This is consistent with the

theoretical noise equivalent angle (NEA) model as predicted in the

NEA equation (see the ring laser gyro noise section).

In addition to the theoretical NEA error, there was an air-

bearing oscillation problem at the end of table rotation when the

table was rotated at low rotation rates. By hand locking the table at

the end of rotation, the table oscillation problem was eliminated and

the one sigma of the measurement was improved from 3.02 arc-sec

to 2.29 arc-sec which represented an improvement of 25%.
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Table IX

rotation rate :

10.5 deg/sec

system pointing

error (arc-sec)

MEAN

SIGMA

E-W

W-E

-0.75

0.41

0.21

-0.75

O. 79

0.23

0.81

0.61

E-W

W-E

0.81

-0.37

-0.17

-1.93

-1.73

-1.15

-1.35

-0.37

-0.55

-0.57

-0.35

-0.57

-0.37

-0.34

0.78

rotation rate

0.2 deg/sec

system pointing

error (arc-sec)

1.99

0.99

0.79

0.99

0.79

1.39

0.01

1.19

-0.75

-0.17

-1.55

-2.33

-1.55

-2,15

-2.13

0.01

-0.75

-0.19

1.34

E-W

W-E

rotation rate :

0.07 decj/sec

system pointing

error (arc-sec)

1.19

3.35

3,93

-2.71

-4.27

1.8

2.57

-1.91

-3.29

0.41

3.35

5.31

0.81

3.02

E-W

W-E

hand locked the table

at end of rotation

rotation rate:

0.05 deg/sec

system pointing

error (arc-sec)

1.79

4.51

3.09

0.01

-1.93

0.03

0.03

0.99

2.17

1.39

-3.89

-2.91

-4.53

-0.77

1.57

-1.33

-1 .15

2.53

-1.73

-0.95

-0.05

2.29

Table IX : Summary of target acquisition test results for 20

deg azimuth rotation at 0 deg elevation. The data is given as system
pointing errors resulting from 20 deg azimuth rotation. In both rotation

directions, east-to-west(E-W)and west-to-east(W-E), there is no significant
difference in the pointing errors. The near "zero" mean value of these

measurements shows that the system input vertical axis is well aligned with
the rotation axis of air-bearing table.

In all these tests, the near "zero" mean value suggests that the

system vertical axis is well aligned with rotation axis of air-bearing

table and the test data also indicates that there is no significant

difference between east-to-west and west-to-east rotation directions.

Further analysis of the test results by removing the known table

error showed the true system error is only 0.55 arc-sec, for the

rotation rate of 0.5 deg/sec. This compares favorably with the

statement of work objective of 0.36 arc-sec.
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Compound Angle Acquisition Tests

To demonstrate the system repeatability in the blind target

acquisition mode, we decided to conduct the tests at the worst case

scenario by rotating the system 20 degrees in air-bearing table to

simulate the azimuth rotation and +/- 60 degrees in Ultradex table to

simulate the elevation rotation for northern and southern

hemispheres. One of great strengths of a ring laser gyro is the

inherent precision scale factor with no apparent upper rotation rate

limitations. And the gyro often shows the scale factor is better than 1

ppm from near zero rotation rate to 2 revolutions/sec.

The blind target acquisition requirement for this Deep Space

Network (DSN) gyro evaluation is 0.36 arc-sec accuracy over 20

degrees rotation which corresponds to a gyro scale factor linearity of

5 ppm. This is a "relative easy target" to meet in a ring laser gyro

based navigation system except where there is a short time duration.

The gyro angular resolution(Least Significant Bit or LSB) limits the

angular accuracy that can be achieved in short time intervals(see

previous discussion of noise equivalent angle). The RL-34 gyro

based system used in our tests has an LSB resolution of 0.38 arc-

sec/pulse, meaning a one pulse error is the entire budget for this test
series.

Fortunately the LSB of the gyro is only limited by how we

sample the gyro analog output. For the purposes of present

production navigators, the existing 0.38 arc-sec sampling works

acceptably. However, we recognized that space and ground based

pointing applications require Bendix to improve our current RL-34

resolution. We developed circuitry in early 1991 that modifies the

RL-34 resolution from 0.38 arc-sec/pulse to 0.05 arc-sec/pulse

which will be able to meet the DSN pointing requirements (see

Recommended Alternatives to Improve Performance Section)

All the test results were recorded as a system outputs of heading,

pitch and roll. The system data is updated every 100 sec and data is

compared between the system reading before moving and after

moving for both heading and pitch. The repeatability of the test is

presented as an azimuth error and pitch error. The definition of

these errors are given as the following:
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Azimuth error= AbsValue{headingl-heading2} - 20 deg - mean value

Elevation error= AbsValue{pitchi-pitch2}- 60 deg - mean value

where headingl is the system heading reading before the rotation

operatio_ and the heading2 is the system heading reading after the

rotation operation, and the same is true for the system pitch reading.

Table X showed a typical compound angle acquisition test

results. The data recorded as system's heading, roll and pitch in the

unit of mils. The compound angle was made by rotating air-bearing

table 20 degs and Ultradex table +60 degs. In Table X, the delta

heading is the absolute value of heading difference before and after

rotations minus 20 deg azimuth rotation, and the azimuth error is by

removing the mean value generated in the delta heading. Similar

mathematical operation is also applied to the pitch data to generate

the elevation error, then, the overall system pointing error is plotted

in both azimuth and elevation errors as shown in Figure 13 and

Figure 14.

The mean value represents a constant misalignment/boresite

artifact that was removed in the post processing. When the rate

table and Ultradex were installed, they were leveled and aligned to

true North as previously described. When the navigation system was

mounted onto the rate table/Ultradex, no fine adjustments were

provided to mechanically align the system input axis to the rotation

axis of table/Ultradex, thereby creating a fixed mean value in angle

which would need to be removed later.

During the initialization and initial acquisition tests (with only

azimuth rotations), the data was corrected for the azimuth boresite.

This was straightforward since the azimuth boresite error was a

constant value with no cross coupling terms. This was expected since

the rate table was leveled to within several arc-sec. As the table was

rotated, the rotation was truly about system azimuth (remember the

system azimuth is defined as the angle from North in a level plane).
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TEST
POINTS

TABLE X

DELTA AZIMUTH DELTA ELEVATION
HEADING HEADING ERROR ROLL PITCH PITCH ERROR

MILS ARC-SEC ARC-SEC MILS MILS ARC-SEC ARC-SEC

1 5866.43
2 6222.59
3 5866.43
4 6222.61
5 5866.44

6 6222.62
7 5866.44
8 6222.62
10 5866.45

11 6222.62
12 5866.45

MEAN

SIGMA

123.22
122.43
125,40
124,01
125.20
124.61
124.80
123.62
124.41
124.61

124.23
0.87

-1.01
-1.80
1.17

-0.22

0.97
0.38
0.57
-0.61

0.18
0.38

-0.88
-0.43
-0.87
-0.42
-0.87
-0.42
-0.87
-0.42
-0.87

-0.42
-0.87

-O.O8
1066.62

-0.08
1066.63

-0.08

1066.63
-0.08

1066.63
-0.08

1066.63
-0.08

7.51
7.30
8.88
7.89

7.40
7.16
6.92
7.40

8.99
8.64

7.81

0.72

-0.30
-0.51
1.07
0.08

-0.41
-0.65
-0.89
-0.40

1.18
0.64

TABLE X: Typical compound angle acquisition test results.
The data was recorded as system's heading, roll and pitch in the unit of mils as
a result of repeating compound rotation of 20 deg azimuth and +60 deg
elevation. For the first test point, the system box is located at air-bearing table
350 deg and Ultradex table 0 deg. The second test point is for system box located
at air-bearing table 330 deg and Ultradex table +60 deg. The third test point
was repeated at the same location as the first test point, and so on for the rest

of test points.

During the initialization and initial acquisition tests (with only

azimuth rotations), the data was corrected for the azimuth boresite.

This was straightforward since the azimuth boresite error was a

constant value with no cross coupling terms. This was expected since

the rate table was leveled to within several arc-sec. As the table was

rotated, the rotation was truly about system azimuth (remember the

system azimuth is defined as the angle from North in a level plane).

The more complicated problem to be post-processed was the

effect that boresite errors have on azimuth, elevation, and roll with

an Ultradex elevation(i.e, target acquisition). Since the rotation axis

of the Ultradex is not coincident with the pitch axis of the system, as

the Ultradex was rotated, a component of that rotation was coupled

into the system azimuth and roll. Figures 11 & 12 show the system

azimuth and elevation errors versus Ultradex elevation. These errors

were caused by the inability to mechanically align the system to the
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air-bearing table/Ultradex. When the system was rotated to a rate

table azimuth and Ultradex elevation, the system reads out a certain

attitude. When the system was re-initialized at this position, the

system still read out the same attitude. The system's ability to locate

attitude was very repeatable throughout the testing.

To use this system for the final DSN pointing application, the

above results indicate that an alignment between the antenna and

the system must be performed. There are two options which will

solve this problem. Mechanical adjustments can be provided to allow

alignment of the system to the antenna or a transformation matrix

can be developed that will transform the system coordinate system

to the antenna coordinate system. Both options require additional

investigation to determine which is best suited for the DSN pointing

application. Since the target acquisition data showed that the system

has excellent repeatability, then with proper adjustments either in

mechanical alignment or transformation matrix operation the final

result will have no impact to the DSN application.

Blind Acquisition Test Conclusions:

The results of these tests are shown in Figure 13 and Figure 14

for air-bearing table rotation rates of 0.5 deg/sec and 0.2 deg/sec

respectively. A circle of 6-sigma of DSN specification(0.36 arc-sec*

6) represents a target of interest. Within 27 tests, 11 times the

system reached the target which indicated the possibility is better

than 40% with a rotation rate of 0.5 deg/sec and the possibility

reduced as the rotation rate decreased as shown in Figure 14 (10/35

reach the target). Faster rotation rates and lower angular

quantization(e.g. 0.05 arc-sec) will improve these results to within
the desired values.

The data also suggested that the system had more error in

heading(azimuth) than in pitch(elevation) and this can be explained

by the fact that the system pitch is bounded by the Schuler loop but

not the system heading(see appendix B). The test results are also

tabulated in Table XI, where the RSS is defined as a root-sum-square

of azimuth error and elevation error. By separating the errors

between the table and the true system error, we found the true

system RSS error is in order of 0.77 arc-sec for the best case and

1.14 arc-sec for a typical result.
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TABLE XI

FILES

101191A

101191D

101191C

101191E

101191F

TABLE

(DEG)

0--340

350--330

350--330

350--330

350--330

ELEVATION

(DEG)

-60

-60

60

60

6O

HEADING

MEANVALUE

(ARC-SEC}

-74.6

-71.3

124,2
123.6

127,5

SIGMA

(ARC-SEC)

1.5

1.2

0.9

2.3

2.5

RTCH

MEAN VALUE

(ARC-SEC}

11.03

10.44

0.72

2.3

1.3

SIGMA

(ARC-SEC}

0.73

0.81

0.72

2.3

1.3

RSS

{ARC-SEC)

1.67

1.49

1.13

2.41

2.83

ROTATION RATE

(D_C_VSEC)

0.5

0.2

0.5

0.2

0.2

TABLE XI : Summary of compound angle target acquisition

test results for a combination of 20 deg azimuth rotation and +/- 60
deg elevation rotation. The data is given as one sigma of measurement
error in both heading (azimuth) and pitch (elevation) directions.

Acquisition Test Error sources

The measurement errors presented in the Figure 13 and

Figure 14 are a total error which is a combination of apparent table

error and true system error. The table error was measured during

the table calibration and the RSS table error between the air-bearing

table and the Ultradex table is given as:

0 2 (3.2Otable = az-table + ultradex = " 55 arc-sec.

The relationship between the true system error and the measured

error (RSS) for the best case shown in Table X file 101191C is given

as "

0 .2 - _/2 0 2 q- "42 0 2
measured- system table

O measured = 1.13 arc-see.

0 = 0.77 arc-see.
system

It is quite clear that we have demonstrated
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error of 0.77 arc-sec RSS for combination of azimuth and elevation
errors. However, for a typical blind target acquisition measurement
the true system error is on the order of 1.14 arc-sec RSS. Again, it is
important to note that faster rotation rates and decreased gyro
quantization will reduce this error to within the objective of 0.36
arc-seconds.

From our previous sigma analysis-;,the values of quantization
error, random walk and in-run bias stability were 1.2 arc-sec, 0.0003
deg/rt-hr, 0.0002 deg/hr, respectively, and the calculated NEA for
our gyro is on the order of 0.52 arc-sec which is in fair agreement
with our best case result of 0.77 arc-sec.

By breaking down the error components in the NEA equation, it
is quite easy to realize that the gyro quantization error is the
dominant error source in our blind target acquisition operation. By
improving the gyro quantization error to 0.05 arc-sec, we can make a
great impact in this measurement. A quick calculation shows that the
improved NEA shall be on the order of 0.18 arc-sec which is better
than the stated objective.

The NEA equation also explains why the one sigma of the
measurement is larger at low rotation rates. At low rotation, it
requires more time to complete the 20 degree rotation so that the
gyro random walk error term starts to contribute as a square root of
time and eventually dominates the error term. It is therefore helpful
to move the antenna as fast as possible, so that the system resolution
is limited by quantization error and this error is fairly independent
of rotation rate.

Inertial Sensor Assembly Orientation Stability

Since the system is mounted on 8 elastomeric isolators, there is

some concern about the mechanical alignment of isolators in the high

elevation orientation. To initially test the mechanical stability of the

isolators, we elevated the system to 40 degrees and used a theodolite

to measure any possible angular changes. The test results showed no

significant change in angle in this setup which implied that the

system mechanical stability is better than one arc-sec. However, in

cold start up conditions, when the system is gradually warming up,

we observed system changes in pitch and small offsets in heading.

The measured results are given in Table XII, and the system

temperature warm up profile is shown in Figure 15. The sagging

stops when the system reaches thermal equilibrium and since most

of our tests are conducted in thermal equilibrium and level, this

finding had no effect on our measured results. This mechanical

instability is only present during a cold start up, therefore it will

have no impact on the DSN application.
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TABLE XII

SYSTEM START UP OVERNIGHT SYSTEM WARM UP

theodolite readout

azimuth (in arc-sec) pitch

0 -1

-1 0

0 -1

1 0

-2 1

0 0

0 -1

0 2

1 0

-1 0

theodolite readout

azimuth (in arc-sec 1

-2

-3

-3

-2

-3

-3

-6

-4

-4

-3

pitch

-5

-6

-6

-7

-4

-5

-6

-6

-8

-7

MEAN -0.2 0 -3.3 -6

SIGMA 0.92 0.94 1.16 1.15

TABLE XII : Inertial Sensor Assembly Stability

Measurements. The system box was elevated at an angle of -30 degrees and

azimuth and pitch were recorded. The instability between the cold start up and
overnight warm up were 6 arc-sec and 3.1 arc-sec, in pitch and azimuth

directions, respectively. The temperature warm-up profile is shown in Figure
15.
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Target Trackinfl Tests

Once the target is acquired, the goal is to track within 0.001

degrees (3.6 arc-sec), rms, for 10 hours. To evaluate the system's

ability to track a target, the system was held stationary on the rate

table. Any change in system attitude output was an error since the

actual attitude of the system was not changing (other than small

changes due to the isolator temperature sensitivities described

earlier). The system maintained this constant attitude by

transforming the inertial inputs from the gyros and accelerometers

to a fixed Earth coordinate system. This essentially removes Earth's

rate from the gyro inputs and gravity from the accelerometers.

Calibration

Previously during the initialization testing, the X and Y gyro

biases were determined with the calibration procedure. At the time,

the Z gyro bias was not changed because it did not affect the

initialization testing. The Z gyro bias errors only affect the azimuth

output during the 10 hr tracking tests. Upon starting the tracking

tests, an acquisition software error was found that limited the length

of the tracking test that could successfully be performed. While

debugging this problem, these short tracking tests were analyzed and

a Z gyro bias error was observed. The bias was changed 4 times over

this 2 day period and the table below shows these changes.

Table XIII

Z gyro bias changes made during

acquisition software corrections

(deg/hr)

Old Bias Correction New Bias

0.00449 0.00450 0.00899

0.00899 0.00200 0.01099

0.01099 0.00200 0.01299

0.01299 -0.00150 0.01149

At this point, a weekend test was set up to execute multiple 10 hr

tracking tests. These tests comprise the first 6 tracking tests

(datafile: 092091a.dat and 092591b.dat). These tests all showed a Z

gyro bias error of about 0.0009 deg/hr. It was realized that a

complete re-calibration should be performed before any additional

tracking tests were run. At this point various other experiments

were performed, including the acquisition tests.
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On 10/4/91, a Friday, a calibration test was performed over
the weekend in preparation for some additional tracking tests. The
actual test was about 24 hours long, 6 hrs at the four positions (0, 90,
180, 270). The data is shown in below.

Data File

Table XIV

Table Table
Azimuth Azimuth

Degrees Mils

System Number

Output Standard of

Mean Deviation Aligns

Mils Mils

100491e.dat 180 3200

360 6400

90 1600

270 4800

3199.86725 0.03291 17

6399.70531 0.04676 16

1599.59889 0.18183 17

4799.99072 0.12124 16

From this data, the X and Y bias corrections were changed for the

first time since the initialization testing. Also, the Z gyro bias was

calculated by knowing that the RSS of all three gyros must equal

Earth's rate. The changes are -.00219, -.00090, and -0.00124 deg/hr

resulting in a final bias of 0.00468, 0.01385 and 0.01273 deg/hr for

gyros X, Y and Z, respectively. A tracking test was performed and a

small (0.00036 deg/hr) bias error was still present for the Z gyro.

This was corrected by changing the Z gyro bias to 0.01309 deg/hr.

The last six tracking tests all had the same bias values.

Tracking Test Results

A total of 12 tracking tests were performed to evaluate the system's

performance. After the first 6 tests, the system was re-calibrated as

described above. Figure 16 shows a typical test and figure 17 is the

best of the 12 tests (after re-calibration). These plots show the

azimuth, elevation and pointing errors versus time and azimuth error

versus elevation error. The pointing error was calculated by taking
the RSS of the azimuth error and elevation error. The overall

performance of each test was determined by taking the RMS of the

pointing error. The plots of the other 10 tests are included in

Appendix C.

Table XV summarizes the results for all 12 tracking tests. The

first 8 tests were performed at 0 deg azimuth and 0 deg elevation.

The ninth test performed incorporated all three phases of testing for

the DSN application. An initialization was done (340 deg azimuth and

0 deg elevation) and was followed by a blind target acquisition
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(20 deg. rotation & 60 deg. elevation change), which was followed by

a 10 hr tracking test. The last 3 tests were initialized at 60 deg

elevation followed by a 10 hour tracking test.

Table XV

Tracking Error RMS Values (arcsec)
All value in arc-sec

Datafile RMS of RMS of RMS of Test Description
Azimuth Elevation Pointing

Error Error Error

(arc-sec) (arc-sec) (arc-sec)

092091a.dat 13.0 2.9 13.2

092591b.dat

100891b.dat

100991b.dat

101091a.dat

Average
Minimum

Maximum

17.6

20.1

12.4

18.7

13.6

10.8

4.6
11.2

17.2

10.4

12.9

13.5

4.6

20.1

4.4

1.7

4.0

3.6

2.1

2.7

1.7

3.8

3.0

3.7

3.9

3.1

1.7

4.4

17.8

19.9

12.8
18.8

13.6

11.2

4.9

11.8

17.4

11.0

13.5

13.8
4.9

19.9

Aligned and tracked at 0 deg heading/0 deg elevation
m

R

ii

w

n

Recalibrated

Aligned and tracked at 0 deg heading/0 deg elevation
I

Aligned at 340 deg heading, 0 deg elevation, tracked
at 0 deg heading, 60 deg elevation

Aligned and tracked at 0 deg heading, 60 deg elevation

Aligned and tracked at 0 deg heading, 60 deg elevation

Aligned and tracked at 0 deg heading, 60 deg elevation

The first 6 tracking tests displayed characteristics of the

consistent azimuth gyro (Z gyro) bias error. Figure 18 shows an

overlay of the azimuth errors for the first 6 tests. Note that for the

first 6 hrs all the azimuth errors increased, indicating an uncorrected

gyro bias (about 0.0009 deg/hr). After this time other errors start to

appear (coupled variables) and the error analysis is not

straightforward. Computer analysis and modeling could be

performed to model the cause of these longer time period errors.

As described earlier, the system was recalibrated before the
last 6 tests. The next two tests showed that the calibration was

successful and the dominant Z gyro bias error was removed. Figure

19 shows an overlay of azimuth errors for these two tests. Note that

there is no initial increase in the azimuth error as previously evident

in Figure 18 These two tests showed lower RMS values compared to

the previous 6 tests that had a Z gyro bias error. The first 6 tests

had a mean RMS pointing error of 16 arc-sec while the latter two

tests had a mean RMS pointing error of 8 arc-sec. Though this is
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based on only two tracking runs (20 hours of data), this 8 arc-sec

RMS value is a better representation of the system's overall

capability.

The last 4 tracking tests were all performed at 60 deg

elevation. At a non-zero elevation, a combination of two gyro

outputs ( X and Z) principally determine the azimuth reading. The 4

tests did not show any indications of-gyro bias errors (the azimuth

error did not drift consistently), but they did have accelerometer

errors (large Schuler oscillations on the azimuth error). Figure 20

shows the azimuth errors for these 4 tests. Note the larger Schuler

oscillations caused by accelerometer errors. The RMS error for these

tests has a mean of 13.5 arc-sec. As will be discussed in the future

recommendation section, pseudo-g computations should reduce the

Schuler oscillations and the data should approach the expected 8 arc-

sec value.

All of the previous tracking discussions were concerned with

the azimuth error. The elevation error is consistently lower due to

the stable Schuler oscillations that bound the error (see appendix B).

The elevation RMS pointing error currently meets the goal of 3.6 arc-

sec/10 hrs. Table XV also shows the distribution of pointing errors

between azimuth and elevations.

Error Analysis for Tracking

Given gyros that have 0.0003 deg/rt-hr RWC, and 0.0002

deg/hr bias stability, a noise limited prediction calculation can be

made for the system. The NER and NEA for a 10 hour test will be

0.00022 dph and 7.9 arc-sec 1 sigma, respectively. The data

obtained during the 2 tracking tests after calibration confirmed this

with a mean RMS value of 8 arc-sec.

RMS Error vs Time

JPL personnel requested the test result be analyzed to show

the RMS pointing error as a function of time. To do this, the n runs of

m points each were applied to the following equation:

RMS vs Timei = where i = 1...m
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The 12 tracking tests were separated into four groups:

1) Figure 21 has runs 1-6 (datafile 092091a.dat

092591b.dat), which are the tests prior to final, fine bias

adjustments, showing the lesser performance of 0.006

degrees at 10 hours.

2) Figure 22 has runs 7-12 (data-file 100891b.dat), which are

all tests after final, fine bias adjustments, including

multiple motions. Note that the error for the first 4 hours

was less than 0.002 degrees, and that this includes

run #9 which had the entire worst case angular

acquisition motion. With smaller accelerometer errors,

the Schuler oscillations would decrease, resulting in this

graph being near 0.003 degrees pointing error at 10
hours.

3) Figure 23 has runs 7-8 (datafile 100991b.dat -

101091a.dat), which are the two identical tracking tests

after final, fine bias adjustments, indicating a 0.002

degree performance past 5 hours, and 0.00425 degrees

error at 10 hours. With smaller accelerometer errors, the

Schuler oscillations would decrease, changing this graph

to nearly 0.003 degrees pointing error at 10 hours.

4)Figure 24 has runs 1 -12 (all tracking tests), showing overall

test results at about 0.006 degrees.
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VII. Parametric Error Model

The only parametric error model that is used to compensate

the gyro's output is a thermal model of gyro bias. The coefficients

for this model are first measured at the sensor level in gyro test. A

temperature test is done from -55 to +70 deg C. with a temperature

soak every 20 deg C. At each soak level, the gyro bias and random

walk ar_: calculated. A 4th order curve fit to temperature is then

performed. The data sheets generated during this test are included

in Appendix D

Once the gyros are installed into a system, the entire system is

calibrated with a completely automated calibration test over

temperature. The system is mounted on a 2 axis temperature

controlled rate table. A multi-position test is performed which

determines the gyro scale factor and bias, accelerometer scale factor

and bias, and gyro and accelerometer misalignments. All (except

gyro scale factor) are fitted to a second order equation of

temperature. The gyro scale factor is less then 1 ppm
uncompensated and does not need to be modeled.

Additionally we have included in Appendix E the differential

equation based gyro model used in our systems modeling of RLG
behavior.
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VIII, Error allocation and overall system

performance

The Ring Laser Gyro has only a few well understood error

sources that have been briefly mentioned in this report, specifically

quantization noise, angle random walk, and bias instability. At this

point we would like to expand somewhat on bias instability and

quantization as they specifically relate to the RL-34 gyro and this

application.

The bias instability can be thought of as small motions of the

gyro's optical axis due to residual effects of pathlength control. The

pathlength controllers impart some out-of plane motion of the optical

axis, and these small, slowly changing motions will fluctuate in a

non-deterministic manner with time resembling an AC signal

component. The degree that they repeat from turn-on to turn-on

was previously a limiting factor that severely degraded bias

repeatability(DC component) of the RLG. The RL-34 gyro has state-

of-the-art pathlength controllers that have reduced the repeatability

from turn-on to turn-on to less than the small in-run fluctuations(AC

component) of the bias. In the DSN application, this has very little

impact on performance as the system and gyros can remain powered

on at all times with no adverse lifetime impact.

The quantization of the gyros in this system is 0.38 arc-

sec/pulse. The Allan Variance of the output signals indicate an

effective quantization of about 1.2 arc-sec, indicating a lack of single

pulse processing in gyro output. This aspect of the quantization is

referred to as spillover pulses, which are due to the dither zero-

crossing strobe being slightly imperfect. Several improvements are

currently pending, and we are in the process of patent applications

so we cannot completely describe how to solve this. The data in

Figure 25 does however show one pulse resolution down to 0.05 arc-

sec, indicating that we have solved the problem.

Quantization & spillover; base motion

In Appendix B we have included for informative purposes, a

complete and thorough explanation of a strapdown navigator

systems implementation, including the evolution of the Schuler

oscillations on the navigation outputs.
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IX. Recommended

performance

alternatives to imarove

The azimuth stability was limited in this contract in part due to

RLG S/N Z2002, which had slightly higher random walk coefficient

and drift stability than the other level axis gyro. Incorporation of

this gyr0 into a position other than azimuth may improve overall

azimuth performance by approximately 30%. We also recommend

potentially replacing the least accurate gyro with one of our newer

4500 series gyros, which will require new calibration, but should

improve that axis random walk performance by 50%.

We recommend incorporation of the BGSD 32:1 quantization

reduction circuitry on all gyro axes to reduce the noise equivalent

angle during the initialization test sequencing. This is equally

important in biasing the gyros as the time to roughly calibrate the

bias is quantization limited. Fine calibration of the gyro bias is still

random walk coefficient limited. Acquisition performance of the RL-

34 based pointing system is greatly enhanced with a lower

quantization value, due to the short times involved in the acquisition

phase. An RL-34 has a nominal scale factor of 1.535 arc-sec/pulse.

When the 32:1 logic is used, this is reduced to 0.05 arc-sec/pulse.

Figure 19 shows initial 32:1 logic data during a proof of concept

evaluation. The Allan variance quantization value for this data is

0.06 arc-sec/pulse, indicating that true single pulse limited noise has
been attained.

We recommend moving to incorporate position damping into

our Kalman filter to project known position and velocity states onto

attitude to improve azimuth accuracy during tracking. This is

applicable to the DSN application(tracking) because the position of

the antenna is fixed in Earth coordinates(i.e, it cannot be moving on

the surface at 2 ft/sec).

As an alternative to using the accelerometers to keep track of

local level during elevation operations, a pseudo-g calculation could

be modeled and implemented which would rely solely on the gyro

rotational outputs, thus reducing the Schuler oscillation amplitudes

during tracking operation.

We also recommend investigating increased dither (lowers the

RWC) of the gyros in the system, which has the risk of potentially

causing increased coning motion.
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X, Summary

Summary

The overall results of this laboratory evaluation are quite

encouraging. The gyro data is in good agreement with the system's

overall pointing performance, which is quite close to the technical

objectives for the DSN application.

The system can be calibrated to the levels required for

millidegree levels of pointing performance, and initialization

performance is within the required 0.001 degree objective.

The blind target acquisition performance is within a factor of

two of the 0.0001 degree objective, limited only by a combination of

the slow rate (0.5 deg/sec) and the existing production quantization

logic(0.38 arc-sec/pulse). Logic circuitry exists to better this

performance such that it will better the objective by 50%.

Representative data with this circuitry has been provided for

illustration.

Target tracking performance is about twice the one millidegree

objective, with several factors contributing. The first factor is the

bias stability of the gyros, which is exceptional, but will limit

performance to the 0.001 to 0.002 degree range for long tracking

periods. The second contributing factor is the accelerometer

contributions when the system is elevated. These degrade

performance into the 0.003 to 0.004 degree range, which could be

improved upon with some additional changes.

Finally, we have provided a set of recommendations to improve

performance closer to the technical objectives. These

recommendations include gyro, electronics, and system

configurational changes that form the basis for additional work to

achieve the desired performance.

In conclusion, we believe that the RL-34 based advanced

navigation system has demonstrated performance consistent with

expectations and technical objectives, and it has the potential for

even further enhancement for the DSN application.
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Appendix A
Copy of letter sent to Noble Nerheim with the raw data records

In this appendix a copy of the July 10 th, 1991 letter to Noble

Nerheim is enclosed. It contains a description of the ring laser gyro data

provided at that time along with plots of the data.

The data is provided in 5 different plot formats for each ring laser

gyro. The first four formats are contained on one page, with the fifth

format on the following page. These are standard plots generated by our

gyro test software used in BGSD's RLG production testing.

In the first graph(top left) are plotted the 100 second gyro count

sums with the gyro input axis approximately perpendicular to local level

(9.841 deg/hr Earth's input rate component). A mean value of the data

and standard deviation are provided at the top of each graph.

The second graph (top right) shows the count sums multiplied by the

1.535 arc-sec/count gyro scale factor, and divided by 100 seconds to

obtain scaled count sum units of deg/hr. The mean at the top of this

graph shows the gyro mean output with the 9.841 deg/hr input. The

standard deviation includes all gyro noise terms and also represents the

first point on the sigma plot shown in the fifth graph.

The third graph (lower left) shows the scaled count sums filtered by

an 18 point (half hour) triangular filter, with the 9.841 deg/hr input

previously subtracted. The mean at the top of this graph shows the mean

gyro bias for this test, but please note that gyro input axis misalignment

does not get removed until final system calibration. The standard

deviation for this graph is a rough approximation to the gyro bias

instability.

The fourth plot (lower right) is just the data in the third plot

subtracted from the data in the second plot. Here it only confirms that the

mean gyro bias subtracted brought the data to near zero mean.

The fifth plot is a standard sigma plot of the data set for the RLG

under test. Graphical analyses were done to estimate the RWC and Bias

Instability for the gyro test.
The last set of data is of the three axes of the ISA tested with S/N

Z2002's input axis vertical. This data set was obtained with

0.38 arc-sec/count test electronics.
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Mr. Noble Nerheim
JPL
M/S 185105
4800 Oak Grove Drive
Pasadena, CA 91109

Dear Noble Nerheim:

July 10, 1991
Allied Signal Aerospace

M/S 2/13
Teterboro, NJ 07608

Enclosed is the gyro data as discussed during the kick off meeting
and telephone conference call. The raw data is on a 3.5" Apple
Macintosh formatted disk as standard text files. The names of the
four files are listed below.

Filename

BGSD file 09-15-89.f01
BGSD file 10-27-90.d01
BGSD file 12-14-90.b01
BGSD file 06-30-91.g01

# of Gyro SN
points
2300 B2003
86 4 Z2002
2300 B4500
2300 B2003, Z2002, B4500

The first three tests were in our standard static test stations and are
the basis for some of the data included in the proposal. The last test
is a recently performed test with the gyros installed in the Inertial
Sensor Assembly (ISA).

Also enclosed are the plots of the above data. The plots show the
gyro output in counts and deg/hr (the scale factor for the RL34 is
1.535 arcsec/count). The plots of the first three tests also calculate
the gyro bias (gyro output - local vertical Earth's rate).

Sigma plots are also included. The usefulness of these plots are in
their graphical representation of the gyro's noise terms. The random
walk coefficient (RWC) and in-run bias stability are shown on each
plot. Note that some of the tests were not long enough to determine
the limit of the gyro's in-run bias stability.
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We look forward to you review of this data and welcome any

comments or questions that you may have.

Sincerely,

Mark Grasso

_ / JZ- ,¢"

/..-fy, -_L_-.-_
( _l_eviewed by:
J J. Ficalora

CC"

Enclosed:

W. Mitchell

E. Luxford

E. Mazurkiewicz

12 data plots
one 3.5" diskette
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Appendix B

Explanation of Navigation Equations

Inertial navigation systems determine change in position from an initial

reference location through double integration of acceleration measured

along three orthogonal axes. The most commonly employed method of
measuring acceleration is through electro-mechanical accelerometers. These

devices are configured to electrically measure the amount of force required

to restrain a proof-mass along their input axes. The electrical signal is
then converted to a digital format for computer processing of the double
integration to determine position.

Of course, one of the basic requirements is knowledge of the accelerometer
input axes at all times while the system is in motion so that the direction

of the change in position is determined correctly . Gyroscopes are employed
in these systems for that purpose, maintaining an inertial reference for

the accelerometers following an initial alignment. Two different mechani-

zations presently are employed in practice, which are gimballed and strap-
down systems. The gimballed systems locate the accelerometers on the inner

gimbal of sets of either three or four gimbals, with that inner gimbal
stabilized by the gyroscopes and stabilization servos. The inner gimbal

orientation is typically maintained such that one accelerometer input axis
is located along each of three navigation axes (for example, North, East
and Vertical).

With strapdown systems, the accelerometers are nominally located along
three orthogonal vehicle axis (i.e., roll, pitch and yaw or roll, elevation
and bearing) and the gyroscopes measure the orientation of the

accelerometers (vehicle) relative to the navigation frame. The gyro
measurements are employed in this case to continuously update a coordinate
transformation matrix which takes the accelerometer measurements from the

vehicle frame to the navigation frame. It is noted that in this strapdown

case, it is necessary that the gyroscopes employed possess high bandwidth
and accurate scale factor so that the accelerometer (vehicle) orientation

relative to the navigation frame is instantaneously and accurately known.
The basic navigation equations in the two mechanizations are therefore as
follows:

0
= X^w
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m

As indicated in these equations, the gravitational field, as measured by

the accelerometer proof-masses must be compensated so as not to impact the
determination of position.

It is also noted that the orientation of the N, E, V navigation frame,
referred to as a "local level" frame of reference is dependent on the

position of the system at any given time. Maintaining this local level
frame in the navigation mode is discussed in a later paragraph.

In addition to the navigation problem, there is also the problem of
initializing the system (determining the initial orientation of the

accelerometers). In fact, the system is capable of a self contained
initialization (initial alignment mode) if the vehicle on which it is

located remains stationary on the surface of the Earth for a few minutes.
In this mode, the accelerometers are used to determine the system orien-

tation with respect to vertical through the knowledge that gravity will be

the only acceleration measured within a stationary vehicle. Similarly, the
gyroscopes are used to determine the system orientation relative to East.

Since no rotation exists around that axis to be measured by the gyros this
null condition is determined computationally (gyrocompassing). With
definition of the East and Vertical axes, the North axis is determined as

the third orthogonal axis in the set. It is noted that any random vibra-
tion motion of the vehicle during this initialization averages to "zero"
and therefore does not affect the alignment process.

To this point, the discussion has referred to a navigation frame of North,

East and Vertical. This frame of reference is, of course, rotating
relative to the inertial frame of reference established by the gyroscopes.
There is the Earth's rotation rate, and if the vehicle is moving relative
to the Earth, there is an additional rotation rate referred to as the

transport rate or navigation frame rate.

Inertial system implementations must account for these rotations. A comon

implementation is to either rotate the gimbals physically or rotate the
strapdown coordinate transformation matrix computationally at these same

magnitudes. These rotations maintain the "system" level and pointing North
and this mechanization is referred to as a North slaved, local level
implementation.

In fact, employing this local level type of system implementation bounds

the inertial reference errors due to accelerometer biases and/or gyro
drifts due to a characteristic referred to as Schuler tuning. It is noted
that in general the limits or bound on errors applies only to the inertial

reference and cannot be extended to velocity and navigation position
errors. In general, these errors may grow with time or time squared due

to gyro drift (particularly azimuth gyro drift) for periods up to six hours
for velocity and twelve hours for position. It is also noted that
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the Schuler tuning mechanization is basically the samefor both strapdown
and gimballed systems since the computations are implementedin the
navigation frame of reference (after the vehicle to navigation coordinate
transformation in the strapdown case). Inertial componenterrors, propa-
gate quite differently in the two systemshowever, and as a result a
greater accuracy burden is generally placed on componentsin the strapdown
mechanization.

Although this is a summary of the basis of inertial navigation, many

complications arise in practice. The most common are accelerometer output
biases which in general result in navigation errors and gyro drifts which

destabilize the inertial reference (also resulting in navigation errors).

As previously indicated, in the presence of these errors, the Schuler

tuning process bounds errors in the computed navigation frame relative to
local level. The reason for this can be developed in a somewhat heuristic

manner through the following exercise.

At any given location on the Earth, the transportation rotation rate is
approximately the vehicle tangential velocity (East and North velocities)
divided by the Earth's radius (plus altitude). Adding Earth's rotation

rate, the following equations are correct to a first approximation.

V. : I
e_E

To gain the insight as to why the errors in the inertial reference are
bounded, these equations are written as error equations. The error due to

accelerometer measurement of gravity which results from any error in main-

taining the inertial reference level is included in the aN, aE terms.

For a high quality inertial system, the off level error is always small and
the accelerometer measurement of gravity due to thls error is therefore

expressed as gravity multiplied by the orientation error.

Proceeding in this manner=

• 1
,==
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It has been assumed that the error in computing Earth's rate is negligible.

This is a reasonable assumption particularly early in a navigation run
before latitude errors become significant.

{4)

The negative sign in equation (4) is a result of the fact that tilt errors

result in acceleration errors opposite in algebraic sign to the rotation
rate computed by equation (2). In other words, the system in inherently
stable.

Therefore

kj.- I o.¢at

Differentiating and rearranging

,!

ONe ._ :o

_c¢ "1"¢'_+k Oe¢ :°

In fact, these equations are the equations of motion of a simple harmonic
oscillator or undamped pendulum, expressed in polar coordinates, where the

length of the pendulum is equal to the Earth's radius R plus the altitude H
at the system location.

The frequency of this oscillator is:

This frequency is referred to as the Schuler frequency and the mechani-

zation is referred to as Schuler tuned. Inserting nominal values for R, G
and H in this equation, the period of oscillation computes to approximately
84.4 minutes In duration.
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d

It is also convenient to present these error equations using La Place
transforms.

They are then written:

'1,. 1,,

Examining these equations leads to a representation by two single axis

block diagrams of undamped oscillators as shown in Figure I. A complete
block diagram error representation is significantly more complicated than
Figure I (due to coupling errors that develop such as latitude error), but

these diagrams allow predicting certain errors with reasonable accuracy.
For example, propagation of accelerometer bias and/or gyro drift errors for

periods up to one Schuler period are predicted with reasonable accuracy.

The results for step function errors in accelerometer bias and/or gyro
drift are shown graphically as follows. It is noted by inspection that the

tilt errors, which are the errors in computation of the inertial reference,
are always bounded in this stable oscillator. It is also noted, however,

that since the oscillator is undamped, the errors remain indefinitely once
the oscillator is disturbed.

V..,4
Z'rr_Y" Sot,,,,-¢..¢. _'lve,r (_W_t'_._

o.TR (.L..-o. 1_ ,_w.A..

z.-ot,-
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Development of the navigation equations is closely related to equations (I)
and (2) and Figure I. In fact, the equations for latitude and longitude
rate are as follows:

R%-c ;L= b)

Where R is the local corrected value of Earth's radius.

The AN and AE accelerometer measurement terms are measurements in an

inertial frame of reference and therefore must be corrected for Coriolis
effects to determine acceleration relative to the Earth.

In other words

Assuming a spherical Earth as a first order approximation

%-g"-

These equations operating in conjunction with the "leveling" rotations and
North slaving rotation define a North slaved, local level inertial
navigation system.
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and (2) and Figure I.
rate are as follows:

Developmentof the navigation equations is closely related to equations (I)
In fact, the equations for latitude and longitude

WhereR is the local corrected value of Earth's radius.

The AN and AE accelerometer measurementterms are measurementsin an

inertial frame of reference and therefore must be corrected for Coriolis
effects to determine acceleration relative to the Earth.

In other words

Assuminga spherical Earth as a first order approximation

Theseequations operating in conjunction with the "leveling" rotations and
North slaving rotation define a North slaved, local level inertial
navigation system.
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Due to problems with navigation over a pole (convergence of longitude)

these equations are modified to develop what is referred to as a unipolar,

wander azimuth configuration. A "pole flag" is employed which changes sign
automatically at the equator to prevent divergence in the navigation
equations at the single pole in the mechanization. One development of this
mechanization is as follows:

Modify the North slaving rotation rate as follows:

to

The plus or minus sign is selected at the equator depending on hemisphere.

In the Northern hemisphere

In the Southern hemisphere

A second definition is that longitude rate is equal to minus the wander
azimuth rate.

-- = d (!

In the Northern hemisphere

It is seen that a difference will develop in the "location" of acceler-

ometer measurement reference axes (X-Y axes) relative to the Earth's N/E
axes.

Figure 2 illustrates this situation
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Velocity and acceleration in the X-Y coordinate frame is therefore

'vy-=,-_.V_ -s,_ •VG,"

"'v,(- -5 _. V,j - _s _, V_£
Differenti ating

Combining the last two equations

Substitution of equation (11) in (17) and simplifying with

Define rotation rates

(15)

_ Vw
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Substituting of (19) into (18)

_J,,-A,-[}_,,,=,_,,,]v_,b-_,,,-I',1,v,,

Which are the basic unipolar navigation equations.

In order to navigate in this mechanization, a set of direction cosines (and
direction cosine rates) are developed using the terms in equation (20).

The initial value of the direction cosines are determined during the gyro-

compassing alignment and updated during vehicle motion through solution of
the direction cosine rate equations. Latitude and longitude are
determined from the latest values of three direction cosines.

Proceed as follows:

By definition
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Differentiating

But

C_ -D

Therefore
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These are the necessary relationships for updating the direction cosines
during vehicle motion in order to compute values of latitude and ]ongitude.

These are computed as follows:

_c_):-_-"c,_,:_co)-_C{)-_o
Which is easily solved for longitude_ u

In addition

Which is solved for latitude

A block diagram of this unipolar mechanization is shown in Figure 3.
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Gyro

Appendix D

Data over Temperature and Thermal Model

STATIC TEMPERATURE DATA

Gyro: Z2002
Data file: 06-07-90.b01

chamber temp. output random walk gyro T. T. dev.
(deg.C) (deg/hr) (deg/rt-h0 (deg.C) (deg.C)

....................................................

25 9.8246 0.0003 26.24 0.20
45 9.8235 0.0011 44.59 0.19
70 9.8233 0.0008 66.88 0.19
45 9.8255 0.0006 42.12 0.31
25 9.8238 0.0007 27.08 0.13
5 9.8239 0.0005 8.21 0.20

-15 9.8230 0.0008 -10.30 0.30
-35 9.8238 0.0004 -26.70 1.61
-55 9.8230 0.0011 -47.87 0.41
-35 9.8240 0.0008 -29.73 0.41

delta T dT dev.

(deg.C) (deg.C)

-0.18 0.01
-0.11 0.01
-0.06 0.01
-0.66 0.02
-0.09 0.00

-0.16 0.01
-0.23 0.01
-0.24 0.01
-0.33 0.01
-0.32 0.01

summary
peak to peak variation of 25 degree points = 0.0008 (deglhr)
average random walk = 0.0007 (deg/rt-h0

thermal model

output = bias + local vertical earth rate + k0*dt +
kl*T + k2*T"2 + k3*T"3 + k4*T"4

where T = gyro temperature - 25

bias = 2.3160e-001 (deg/hr),
k0 = -5.000e-003 (deg/hr/deg.C)
kl = 4.278e-003 (deg/hr/deg.C)
k2 = 2.713e-005 (deg/hr/deg.C"2)
k3 = 7.51 le-008 (deg/hr/deg.C"3)
k4 = 7.643e-011 (deg/hr/deg.C"4)

bias repeatability = 0.0005 (deg/hr 1 sigma)
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STATIC TEMPERATURE DATA

Gyro: B2003
Data file: 09-29-89.a01

chamber temp. output random walk gyro T. T. dev.
(deg.C) (deg/hr) (deg/rt-hr) (deg.C) (deg.C)

25 9.7887 0.0005 26.04 0.09
45 9.7872 0.0006 44.45 0.21
70 9.7849 0.0005 67.80 0.21
45 9.7877 0.0005 45.37 0.23
25 9.7896 0.0005 26.82 0.17
5 9.7897 0.0006 7.94 0.15

-15 9.7923 0.0006 -10.74 0.07
- -35 9.7933 0.0008 -28.83 0.41

-55 9.7960 0.0006 -47.15 0.38
-35 9.7939 0.0008 -30.44 0.37
-15 9.7924 0.0005 -11.67 0.30

5 9.7906 0.0006 7.22 0.26
25 9.7899 0.0006 25.88 0.28

delta T dT dev.

(deg.C) (deg.C)

0.00 0.00

0.00 0.00
-0.00 0.00
0.00 0.00
0.00 0.00

0.00 0.00
0.00 0.00
0.01 0.01

-0.00 0.00
0.00 0.00
0.00 0.00

0.01 0.00
0.01 0.00

summary
peak to peak variation of 25 degree points = 0.0012 (deg/hr)
average random walk = 0.0006 (deg/rt-hr)

thermal model

output = bias + local vertical earth rate + k0*dt +
kl *T + k2*T"2 + k3*T*3 + k4*T"4

where T = gyro temperature - 25

bias =-1.3823e-001 (deg/hr),
k0 = 0.000e+000 (deg/hr/deg.C)

1_ = -8.686e-O04 (deg/hr/deg.C)-2.561e-006 (deg/hr/deg.C"2)
k3 -4.281e-010 (deg/hr/deg.CA3)
k4 6.516e-012 (deg/hr/deg.C"4)

bias repeatability = 0.0004 (deg/hr 1 sigma)
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STATIC TEMPERATURE DATA

Gyro: B4500
Data file: 03-30-90.a01

chamber temp. output random walk gyro T. T. dev. delta T dT dev.
(deg.C) (deg/hr-) (deg/rt-hr) (deg.C) (deg.C) (deg.C)(deg.C)

25 9.8165 0.0004 26.39 0.04 -0.48 0.00
45 9.8169 0.0005 43.90 0.22 -0.48 0.00
70 9.8188 0.0005 66.64 0.16 -0.54 0.00
45 9.8165 0.0005 44.72 0.45 -0.46 0.00
25 9.8154 0.0005 26.39 0.33 -0.44 0.00
5 9.8133 0.0004 8.00 0.19 -0.44 0.00

-15 9.8118 0.0007 -10.71 0.20 -0.46 0.00
-35 9.8110 0.0006 -29.20 0.29 -0.50 0.01
-55 9.8110 0.0004 -48.14 0.40 -0.48 0.01
-35 9.8110 0.0005 -30.08 0.31 -0.50 0.02
-15 9.8118 0.0005 -11.40 0.32 -0.51 0.00

5 9.8138 0.0005 7.27 0.27 -0.53 0.01

summary
peak to peak variation of 25 degree points = 0.0011 (deg/hr)
average random walk = 0.13005 (deg/rt-h0

thermal model

output = bias + local vertical earth rate + k0*dt +
kl*T + k2*TA2 + k.3*T"3 + k4*T*4

where T = gyro temperature - 25

bias = 2.0200e-001 (deg/hr),
k0 = -5.000e-003 (deg/hr/deg.C)

kl = 4.249e-003 (deg/hr/deg.C)
k2 3.024e-005 (deg/hr/deg.C 2)
k3 = 9.561e-008 (deg/hr/deg.C^3)
k4 = 1.113e-010 (deg/hr/deg.C^4)

bias repeatability = 0.0003 (deg/hr 1 sigma)

D-11



4-1

In
0J

4.1

>,

4-;

.r-g

.O

(1)
CL

£.

43

O
Ln
_T
rn

03
C_
CO
C_

I!

==¢

t,--

E

o,3
m

ii

i!

[Jq/Oap} lndln0 pa[apc_

q

l

m

m

m

m

ro

!

===

II

i

m

_=_ , _ =_

cn
I

130
O
I

0

0
0")

I

0
p')
I

(.r)
0

_J
I,--4

Lu

0

0
0
i._

m

(5
rr

D-12



4.1

Q,I
4.1

4_
.e'l

r-=l

.O
cO

Q.

(,

I0

.O

0
Lr)

m

oJ

r0
O.

;;/;;I I I I

I I I__1 I !-I--I I-I-

I I_ I II I I: I I I

I

I

I

7

I

I

-I - I-

I I

I I

I I

I I I

I I

I I I

-I - I-

I I I

I I

I I I

I I I

7 -I- I-

I I I

I I I

-I -I - I-

I

I I I

I I I

I I I

I I I

I I I

7 -a-l-

I I I

I I I

D-13

I I

I I

7-I-

I I

I I

-I-I-

I I

I

I-

I

I

I-

I

I

I I

I I

I

I I'.

I-

I

I

I I

I

-I - I-

I I

I I

-I - I-

I I

I I

I I I

I I

I

I

I

I

I I I

I I I I

7-1-1- I'- T

I I I I I

I I I I I

-I-1-1-1-4-

I I I I

I I I I

I I I I I

I I I I

I I I I

I I I I

-I-i I- T 7-1-
I I I I I I

I I I I I I

I I

I

I

I

I

I

I-

01
I

0
I

0

0
01

I

0
t,,r1

I

m
o

._1
I--t

I---

IZ)

0

m

rr



4J
03

4J

4J

.(D

4-J

Cl
QJ

L

CO
.f-I

.IS)

0
U_
_T

QJ
C_

Q

Q
Q
i

0

_r

I

10
E
ot

IN
0
o
i
m

° 4t_

ID

0
÷ 0

I
E
=DO
_0
E •

|,
-i

,i
=

L

@"

-- I I I I

(dwpw) _,uaJjn:) e:l[al:)

0
0
I
¢g
n.I

I

E

m

t

(D

m
L
"1
0
r"

=..=

mr

m o

o
I 0

I
C
#DO
_0
E

m

0

£

==

Og

=r

o=

I

4J

_r
¢u

0
I 0

I
C

0

O1
I

CO
0
I

0
tO

0

I
0

I

0

_J

b.

0

0
0

m

IT

LD

D-14



Appendix E

Differential E.quation Gyro Model

The following differential equation describes a model for RLG angle
error:

e= EGB + EGBw +EGBsF + EGBI + QN + EGN

where:

EGB is the error in fixed gyro bias.

as a random, initial bias.

It is modelled

EGBw is the gyro bias warm-up error, and is

modelled as an exponentially decaying uncertainty

in gyro bias. The uncertainty is reduced with time
until a lower limit is reached after which it is

modelled as a fixed random bias.

e.g.

if E(EGBw) 2 >_ (_2 limit

then model: =-
dt

EGBw

'17

else model: ' ' _" O

dt

E-1



EGBsF is an error in gyro rate produced by an error

in gyro scale factor.

eGBsr: = ESF *

a(sF)
I_ -0

dt

where:

is the sensed gyro rate, and

E SF is the error in gyro scale factor. This error is

modelled as an initial random scale factor error.

The next three terms are the major sources of noise

that exist in the RL-34 gyro and are related to those

variances typically used in gyro testing to

compute/model the noise equivalent rate(NER).

EGBI is the random bias error. This error source is

used to model gyro bias instability. This is

modelled as a first order Markov process:

d(EGBI) £GBI
- - _ + nbm

d t '_brn

where nbm = w(t)* "_/
2*(_'bm 2

"_bm

for long term stability, a random ramp model is
used:

d(EGBI)
-0_

dt

d(0_)
-O ; _ = Random Ramp

dt
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QN is the quantization noise due to gyro output

angle quantization. It is modelled as an integral of

gyro quantization(producing gyro angle error) by a

white noise process with variance bounded(uniform

distribution).

EGN is the gyro random walk in angle, which has a

white rate noise distribution in power spectral

density.
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Appendix F

Description of Raw Data Records

Four data files are included on a 3.5" Macintosh formatted disk

as standard test files. The names of the four files are listed below:

Filename

BGSD file 090991a.dat

BGSD file 100991b.dat

BGSD file 101191f.dat

BGSD file 700Hz

Description

Example of an initialization test

Example of two tracking tests

Example of an acquisition test

Example of 700 Hz data

The first two files contain gyro X, Y and Z outputs in 'deg/hr',

accelerometer outputs in 'Gs', system attitude (heading, roll, and

pitch) in 'mils', and alignment/navigation time in 'seconds'. The last

file only contains the system attitude and alignment/navigation time.

The alignment/navigation time is a system variable that is used to

either show the time left in alignment mode or the time in navigation

mode. The 700 Hz data file only contains X,Y and Z gyro counts.

For example, Figure F-I shows the first 30 points of BGSD file

090991a.dat. During this test, multiple 15 minute alignments were

performed. The alignment/navigation time starts at 900 (15 minutes

= 900 sec) and counts down to zero, then counts up until commanded

into align mode again (300 seconds later). Note, the data acquisition

was performed asynchronous to the alignment/navigation time. The

heading data recorded in table III (pg 24) of the report is the last

data point while still in align mode. For example, the first value and

second points in table III corresponds to data point 10 and 22.

respectively.

Figure F-II shows the first 30 points of file BGSD file

100991b.dat. This datafile contains two tracking tests. Data points

3-11 show the alignment data. Data point 13 shows the acquisition

data (20 azimuth and 60 deg elevation). Data points 14 though 388

show the 10 hrs of tracking data. After the 10 hrs of tracking was

complete, the system was re-initialized and a second tracking test

was performed. Data points 389 to 397 represent the second

alignment and points 398 775 represent the second tracking test.

BGSD file 101191F. DAT contains the raw data records of a

compound angle acquisition test (azimuth table rotation rate at 0.2

deg/sec from 350 deg azimuth and 0 deg elevation to 330 deg

F-1



azimuth and +60 deg elevation). Test data points 2 through 10 show
the 15 alignment after which the system was switched to navigation
mode for the target acquisition test. The first acquisition point was
test data point 11 where the system was located at 330 azimuth and
0 deg elevation. The next test point was an intermediate point taken
during the acquisition motion. At test point 13, the system
completed the compound angle rotation and was located at 350 deg
azimuth and +60 deg elevation. The reverse operation which moves
the system back to the original position was recorded in test points:
14 and 15. This procedure was repeated 8 times. All the
intermediate test points ( pts: 12, 14, 16, 18 ..etc.) were removed
before processing the data. Please refer to the text where an
example calculation was given on pg 36.

The 700 Hz data file only contains X,¥ and Z gyro counts. The
scale factor for this data is 0.3838 arcsec/pulse. The total length of
the test is 6 seconds.
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